skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dinh, Khuong V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Shifting climate patterns may impose novel combinations of abiotic conditions on animals, yet understanding of the present-day interactive effects of multiple stressors remains under-developed. We tested the oxygen and capacity limited thermal tolerance (OCLTT) hypothesis and quantified environmental preference of the copepod Tigriopus californicus , which inhabits rocky-shore splashpools where diel fluctuations of temperature and dissolved oxygen (DO) are substantial. Egg-mass bearing females were exposed to a 5 h heat ramp to peak temperatures of 34.1–38.0 °C crossed with each of four oxygen levels: 22, 30, 100 and 250% saturation (4.7–5.3, 5.3–6.4, 21.2–21.3, and 50.7–53.3 kPa). Survival decreased at higher temperatures but was independent of DO. The behavioral preference of females was quantified in seven combinations of gradients of both temperature (11–37 °C) and oxygen saturation (17–206% or 3.6–43.6 kPa). Females avoided high temperatures regardless of DO levels. This pattern was more pronounced when low DO coincided with high temperature. In uniform temperature treatments, the distribution shifted toward high DO levels, especially in uniform high temperature, confirming that Tigriopus can sense environmental p O 2 . These results question the ecological relevance of OCLTT for Tigriopus and raise the possibility of microhabitat selection being used within splashpool environments to avoid physiologically stressful combinations of conditions. 
    more » « less